Number Fields  (2nd Edition) Spiral-Bound |

Daniel A. Marcus

$38.27 - Free Shipping

Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.

Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
Publisher: Springer Nature
Original Binding: Paperback
Pages: 203 pages
ISBN-10: 3319902326
Item Weight: 1.0 lbs
Dimensions: 6.1 x 0.91 x 9.3 inches

“This volume has stood the test of time. It is both demanding of and rewarding for anyone willing to work through it.” (C. Baxa, Monatshefte für Mathematik, Vol. 201 (2), 2023)

“It is well structured and gives the reader lots of motivation to learn more about the subject. It is one of the rare books which can help students to learn new stuff by themselves by solving the numerous exercises which cover very deep and important results … . The prerequisites for the reader are kept to a minimum making this book accessible to students at a much earlier stage than usual textbooks on algebraic number theory.”

“A book unabashedly devoted to number fields is a fabulous idea. … it goes without saying that the exercises in the book — and there are many — are of great importance and the reader should certainly do a lot of them; they are very good and add to the fabulous experience of learning this material. … it’s a wonderful book.” (Michael Berg, MAA Reviews, October 22, 2018)

Daniel A. Marcus received his PhD from Harvard University in 1972. He was a J. Willard Gibbs Instructor at Yale University from 1972 to 1974 and Professor of Mathematics at California State Polytechnic University, Pomona, from 1979 to 2004. He published research papers in the areas of graph theory, number theory and combinatorics. The present book grew out of a lecture course given by the author at Yale University.